

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 1 OF 8

AURA Presents

ROBOTICS WORKSHOP
PART 1 OF 3 CRASH COURSE TO PROGRAMMING IN C ROOM: 405-328

1 HELLO WORLD

Welcome to the world of programming. We will
ambitiously try to complete half of the ENGGEN 131
course within three hours. Enjoy!

Note

Since we are speeding things up, these tasks may be
challenging to you. Whenever you’re stuck, or you
feel like you’re falling behind, feel free to ask for
help!

To begin, hop onto:
https://repl.it/repls/ApprehensiveWellmadeLifecycle

You’ll find code already available.

Hit the “run” button at the top. This does the
following:

1. Your code gets compiled to a runnable file.
2. The generated file is then executed, and

“Hello World” is displayed on the screen.

EXPLANATION

First, look at lines 15 and 24:

int main(void) {
 ... lines skipped ...
}

These two lines are special. They tell the compiler
where the program starts and end. You’ll learn more
about it in the Functions section.

Programs perform instructions one at a time,
typically going down line by line. Each line is called a
statement. Statements are ended with a semicolon
(the “;”).

The first instruction that gets executed is line 19:

printf("Hello World\n");

This printf is a function, a.k.a. a command, that
instructs the computer to display a piece of text
(you’ll learn more about functions soon). In this case,
this code instructs the computer to display “Hello
World” onto the screen.

TASKS

Try changing the “Hello World” text. What happens
when you hit “run”?

What happens when you add text after the strange
“\n” text? What do you think this strange text does?

UNDOING YOUR CHANGES

If you’ve made some changes to the code we’ve
supplied and you want to revert to our code, simply
hop back onto the original link we’ve supplied in this
handout. Your changes will then be erased.

COMMENTS

You can add comments in your code to help explain
what a line does, or to make a note. Comments has
no effect on the program behaviour – they’re purely
for us humans to read. In C, you can comment each
line individually or comment blocks of code at once:

// single line comment

/*
block comment that can
span
several
lines
*/

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 2 OF 8

2 VARIABLES & DATA TYPES – STORING DATA
DATA TYPES

Programs tell the computer how to manipulate data.
The “Hello World” text from before is an example of
such data. There are several kinds of data, known as
data types. The data types we will be using are
integers, floats, and chars.

Data Types – Integers

Integers are whole numbers. Writing numbers
without a decimal point, such as 42 and -36, are
assumed to be integers.

Data Types – Floats

Floats are numbers that can have fractional parts.
Writing numbers with a decimal point, such as 1.0
and -0.35, are assumed to be floats.

Data Types – Chars

Chars are single characters. These are written by
wrapping the character in single quotes, such as 'c'
and '\n'.

What about the text “Hello World”? It’s not a single
character, but a sequence of characters, and you’ll
learn about that soon when we get to the Arrays
topic.

VARIABLES

It’ll be useful to be able to store data while the
program runs. To do this, we can put data into
variables. There are three things we’ll be doing to
variables: creating them in the first place (called
declaring variables), putting data into variables
(called assigning variables), and reading data from
variables.

Declaring Variables

Variables are declared by writing

<variable type> <variable name>;

where <variable type> can be, for example, int,
float, or char.

For example:

// Here we declare an integer called x,
// and a float called myFloat.
int x;
float myFloat;

Assigning Variables

Variables can be assigned by using the assignment
operator “=”. The value on the right of the equals
sign is then written into the variable on the left of the
equals sign.

Here’s an example:

// Here we assign the integer 2 to the
// variable x, and the value 3.0 to the
// variable myFloat.
x = 2;
myFloat = 3.0;

// You can also assign and declare at the
// same time:
float z = -2.8;

Using Variables

Just as numbers can be put to the right side of the
equals sign, we can also use variables on the right
side. Things on the right side are called expressions.
Expressions are things that can have its value
calculated in the program. Data and variables can be
used as expressions.

// Here we assign the value of z to myFloat.
myFloat = z;
// so myFloat now has the value of -2.8

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 3 OF 8

We can also combine numbers and variables
together to form larger expressions using operators.
Standard mathematical operators are available (+, -,
*, /, and many more).

// Here we declare a variable
// called sum, and we initialize it
// by using the previous variables
// and adding them together.
float sum = x + z + myFloat;

// Here we display the sum onto the
// screen using the printf
// function. The weird %f specifier
// tells printf where to display
// the float.
printf("The sum is: %f\n", sum);

DEMO – USING VARIABLES

Clear the existing code and then run the following.

#include <stdio.h>

int main(void) {
 int x;
 float myFloat;

 x = 2;
 myFloat = 3.0;
 float z = -2.8;

 float sum = x + z + myFloat;
 printf("The sum is: %f\n", sum);
}

You should then see “The sum is: 2.200000”, because

2 + 3 − 2.8 = 2.2

TASK – CREATING VARIABLES

Create a program that declares an integer, a float,
and a char, assigns values to them (to your liking),
then displays them onto the screen.

Tips: Printing Data to the Screen

Calling the following
printf("My numbers are %d and %d\n", 2, 3);
will display “My numbers are 2 and 3”, where the 2
and 3 are substituted into the %d specifiers.

To display integers, use the %d specifier.
To display chars, use the %c specifier.
To display floats, use the %f specifier.

TASK – COURSE MARK CALCULATOR

Imagine you have a university course with three
assessments: a project worth 30%, an assignment
worth 20%, and an exam worth 50%. The course
mark is computed as the weighted average of the
assessment marks. Each assessment is assigned a
mark out of a hundred.

Write a program that declares a variable for each
assessment mark, assigns values for them, then
displays the overall course mark based on this
information.

3 CONDITIONALS – DECISION MAKING
RELATIONAL OPERATORS

In addition to the basic mathematical operators (+, -,
*, /), there are also relational operators that help
you compare data. These, when given two numbers,
will evaluate to either 0 or 1. They ask questions,
such as whether one value is greater than another
value, from which it evaluates to 0 when the answer
is false, and 1 when the answer is true.

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 4 OF 8

Try the following code with different values of a and
b. It illustrates the behaviour of the following
operators: <, >, ==, !=, >=, and <=. See if you can
figure what each of those operators do.

#include <stdio.h>

int main(void) {
 // Here we create two integers
 // called a and b.
 int a = 1;
 int b = 2;

 // We will then compare them using
 // operators.
 int c = a < b;
 printf("The value of c is %d\n", c);
 c = a > b;
 printf("The value of c is %d\n", c);
 c = a == b;
 printf("The value of c is %d\n", c);
 c = a != b;
 printf("The value of c is %d\n", c);
 c = a >= b;
 printf("The value of c is %d\n", c);
 c = a <= b;
 printf("The value of c is %d\n", c);
}

LOGICAL OPERATORS

There are also three logical operators that combine
different results together. If x and y were variables:

 Logical negation: !x evaluates to 0 when x is
nonzero, and evaluates to 1 when x is zero.

 Logical AND: x && y evaluates to 1 when
both x and y are non-zero, and evaluates to 0
otherwise.

 Local OR: x || y evaluates to 1 when either
x or y or both are non-zero, and evaluates to
0 otherwise.

For example, we can compare three variables this
way:

#include <stdio.h>

int main(void) {
 // Here we create three integers
 // called a, b and c.
 int a = 1;
 int b = 2;
 int c = 3;

 // Is b between a and c?
 int d = a < b && b < c;
 printf("The value of d is: %d\n",d);

 // Do one or more of a and b have a
 // value less than c?
 d = a < c || b < c;
 printf("The value of d is: %d\n",d);
}

IF…ELSE CONDITIONALS

We can then make decisions based on these
comparison results using if…else conditionals. These
run different blocks of code depending on the
condition.

#include <stdio.h>

int main(void) {
 // Try changing these values:
 int x = 3;
 int y = 4;

 if (x == 0) {
 // Statements in here will run if
 // x equals zero.
 printf("A\n");
 } else if (y > 2) {
 // Statements in here will run if
 // x does not equal zero, and y is
 // greater than two.
 printf("B\n");
 } else {
 // Statements in here will run if
 // x does not equal zero and y is not
 // greater than two.
 printf("C\n");
 }
}

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 5 OF 8

TASK – COURSE GRADE CALCULATOR

Hop onto this code template:

https://repl.it/repls/DeadlyNegligibleClosedsource

You’ll see that an integer, called courseMark, has
been declared. In the space provided in the
template, calculate the grade associated with the
mark using the UoA standard grading scale and
display this grade onto the screen. The link to the
UoA standard grading scale is available in the
template.

Change the value of courseMark to see if your
program behaves correctly.

4 ARRAYS – SEQUENCE OF DATA

If a variable is a box for storing data, then an array is
a line of boxes next to each other for storing a
sequence of data. Arrays are declared in the
following way:

<type> <name>[<array-size>];

For example, here we create an array of five integers:

int myArray[5];

To read from and write to an array, we use square
brackets to index the position of the array we want to
access. The index is a number that starts at zero and
identifies the position of each thing in the array. Each
thing in the array is called an element. For example,
to set values to each of the five elements of myArray,
we would write:

myArray[0] = 1;
myArray[1] = 42;
myArray[2] = -3;
myArray[3] = 118;
myArray[4] = 11;

Similarly, to read from index-3 of myArray:

printf("Value is: %d\n", myArray[3]);

Caution

If you have an array of five integers, don’t access
from index 5 onwards! Your code will compile fine,
but bad stuff will happen. Always make sure that the
index is within the bounds of the array.

Arrays can be initialised with data when it is
declared, like so:

int myOtherArray[4] = { 2, 1, 1, 8 };

If you remembered from earlier, we can represent
textual data by using a sequence of characters, aka
char arrays. These textual data are called strings.
They work just like normal arrays, except that they
end with a special invisible character '\0' that
marks where the string ends. You can initialise them
using double quotes:

char myString[80] = "Hello World";

That piece of code behaves identically to:

char myString[80] = {
 'H',
 'e',
 'l',
 'l',
 'o',
 ' ',
 'W’,
 'o',
 'r',
 'l',
 'd',
 '\0',
};

Other than that, we won’t be using much of strings in
robotics.

5 LOOPS – REPEATING INSTRUCTIONS

If you need to assign values to all elements of a small
array, that is okay. But what if it was an array of a
hundred integers? Thousand integers?

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 6 OF 8

Instead of writing the same line of code over and
over again, it is possible to repeat an instruction
many times using a construct called while loops:

while (<condition>) {
 // ...code to be repeated...
}

where <condition> is an expression that determines
whether to keep repeating or not. For example, if we
ran the following code:

#include <stdio.h>

int main(void) {
 int i = 0;
 while (i < 2) {
 i = i + 1;
 }
 printf("done"\n);
}

What would happen?

First, i is set to 0.
Then we reach the while loop.
Is i < 2? Yes, so we enter the while loop.
i gets incremented to 1.
We reach the end of the while loop.
We jump back to the condition – is i < 2?
Yes, so we enter the while loop once again.
i gets incremented to 2.
We reach the end of the while loop.
We jump back to the condition – is i < 2?
No, so instead of entering the while loop, exit it.
Print “done”.

The statements inside the while loop will continue to
be repeated until the <condition> becomes zero.

Here is an example program to count the length of a
word is using a while loop.

#include <stdio.h>

int main(void) {
 char myString[100] = "robots.";

 int i = 0;

 // While the i’th character is
 // not a period...
 while (myString[i] != '.') {
 // Move on to the next character.
 i = i + 1;
 }

 printf("%d letters", i);
}

TASK – GPA CALCULATOR

Hop onto this code template:

https://repl.it/repls/DangerousOrangeredSourcecode

You’ll see that an array of integers, called
courseMarks, have been declared. In the space
provided in the template, calculate the current GPA
for a hypothetical student with the given course
marks. Use loops to help you.

Assume that the courses use the UoA standard
grading scale (link is available in the template).

Try changing the course marks in the array and see if
your program still works as you’d expect.

6 FUNCTIONS – REUSING CODE

Do you remember printf from the first example?
That is a function. A function (also known as a
subroutine) is a group of statements that performs a
particular task. Once a function is defined, you can
then use the function multiple times in your
program.

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 7 OF 8

FUNCTION CALLS

The process of using functions is called “calling a
function”, also known as invoking or dispatching the
function. To call a function called aFunction, you
write

aFunction();

Some functions expect some input data, called
arguments. For example, printf expects at least one
argument (and an additional argument for each
specifier). The arguments are given to the function
call inside the round brackets one by one, separated
by commas. Note that the order that the arguments
go in matters.

aFunction(arg1, arg2, arg3);

// Example of passing three arguments to
// the printf call.
printf("2nd arg: %d, 3rd arg: %d\n", 2, 5);

DEFINING FUNCTIONS

You can create your own functions in the following
way:

<return-type> <function-name>(<args>) {
 // Write your code here.
}

where <return-type> can be void, int, float, char,
and many others. For example, we create a function
called showMeaningOfLife, which prints 42 onto the
screen.

void showMeaningOfLife() {
 int yes = 42;
 printf("Meaning of life: %d\n", yes);
}

To call this function, you could write:

showMeaningOfLife();

Functions can give data back to the code that called
the function. This is called returning data. The
showMeaningOfLife function doesn’t return
anything, so we wrote void as the return type. We

can write the function so it returns the number
instead of printing it, using the return keyword:

int getMeaningOfLife() {
 printf("Returning the meaning of life\n");
 return 42;
}

We can then call this function inside an expression:

int niceNumber = getMeaningOfLife() * 10;
// niceNumber now has the value of 420

Functions can also accept input data as we saw
earlier. To create functions that accept arguments,
we write the argument types and names within the
round brackets like this, just like declaring variables:

int absoluteSum(int x, int y) {
 int sum = x + y;
 if (sum < 0) return -sum;
 else return sum;
}

As examples of how to call this function:

printf(
 "The absolute sum of -3 and 1 is: %d\n",
 absoluteSum(-3, 1)
);
int x = absoluteSum(4, -absoluteSum(-5, -
10));

Whoa, that printf code above looks weird

Yes. In C, you can add excessive spaces and new-lines
in your code, and it will still be correct and
functional. Here, we’ve split the printf function call
onto four lines to help readability.

THE PROGRAM ENTRY POINT – INT MAIN

Remember these two special lines in our programs?

int main(void) {
 ... lines skipped ...
}

This defines a special function called main. This is the
entry point of the program, the first function that
gets called.

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 8 OF 8

Why does it return an int? This is the program’s exit
code which signals whether the program succeeded
or failed. While it’s an important and useful feature,
we will not be using it in our robotics programs so
don’t worry about it for today.

Why Write Functions?

In the next exercise, you will solve a problem by
splitting it into smaller problems and solving each
subproblem as a function.

In engineering, we work with large, complex systems
and we need to think in higher levels of abstraction.
Not only is it tidier, easier to understand and easier
to maintain, but it also saves you from copying and
pasting code each time you want to do the same
thing.

7 TASK – A HYPOTHETICAL ROBOT

Imagine, in a hypothetical situation, that your sleep-
deprived-self decided that instead of studying, you’ll
spend the night programming a line-following robot
for some strange university club. To help you achieve
this, some fellow friends broke down the problem
into the following smaller subproblems and asks you
to complete them.

First, write a function called detectLine that accepts
the following two arguments:

1. An integer called sensorValue, and
2. An integer called prevDetected.

The detectLine function should return an integer.
When sensorValue is greater than 3000, it should
return 1. When sensorValue is less than 2000, it
should return 0. Otherwise, it should return
prevDetected.

Next, write a function called getSteering that
accepts the following four input arguments:

1. An integer called leftDetected,
2. An integer called midDetected,
3. An integer called rightDetected, and
4. An integer called prevSteering.

The first three arguments have a value of 0 or 1
depending on whether the left, middle or right
sensor has detected a line.

The getSteering function should return an integer.
When the left or right sensor detects a line, it should
return -1 for left and 1 for right. When only the
middle sensor detects the line, it should return 0.
When none of the three sensors detect the line, it
should return prevSteering.

Finally, write two functions called driveLeftMotor
and driveRightMotor, both of which accepts a
single integer argument called steering and both of
which should return an integer:

 When steering is 0, both functions should
return 127.

 When steering is -1, driveLeftMotor should
return 40 while driveRightMotor should
return 127.

 When steering is 1, driveLeftMotor should
return 127 while driveRightMotor should
return 40.

To test your code, follow this link and write your
code in the spaces provided:

https://repl.it/repls/OpulentWholeRatio

8 THAT’S ALL FOR THIS SECTION

Congratulations for reaching this far! Don’t worry if
you’re behind or ahead. Everyone has their own
pace, and we just hope you’ve had some fun today.

Please feel free to jump straight to the next section,
where we start programming robots.

If you’d like to learn more about C, we recommend
you Google some C tutorials online. While you’re
programming, you might find having a reference
nearby handy. For this, we recommend the following
resource: https://en.cppreference.com/w/c.

