

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 1 OF 8

1 INSTALLING ROBOTC

Visit http://www.robotc.net/download/vexrobotics/
to download and install ROBOTC on your computer.
Once installed, run ROBOTC.

IMPORTANT SETTINGS

Make sure that the Platform Type is selected
properly. Go and select Robot > Platform Type > VEX
2.0 Cortex.

Also make sure that the VEX Cortex Communication
Mode is set properly. Go and select Robot > VEX
Cortex Communication Mode > USB Only.

RobotC Official Reference Documentation

Throughout this handout we will give you links to the
official documentation for ROBOTC, which gives a lot
more information than this flimsy document. If in
doubt, check it out! The home page for this official
documentation is here:

http://help.robotc.net/WebHelpVEX/index.htm

2 CREATING A NEW PROGRAM

Throughout this part of the workshop, we will be
using a preconfigured program template rather than
starting from scratch. Download the template here:

http://aura.org.nz/workshop2019
(Select the file WorkshopTemplate.c)

Open this template using the big “Open File” button.

Whenever you want to work on a new program for
this workshop, just Save-As the file under a new
name (File > Save As).

3 VEX CORTEX

The VEX Cortex is the brain of the robot you will be
programming in these workshops. The motors and
sensors you will be using are wired up to the ports in
the Cortex. You can download your program onto the
Cortex to control them.

4 MOTORS & SENSORS SETUP

Before you can write a program, you need to let
ROBOTC know about the motors and sensors you are

AURA Presents

ROBOTICS WORKSHOP
PARTS 2-3 OF 3 LINE FOLLOWING CHALLENGE ROOM: 405-328

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 2 OF 8

using and what ports you are plugging them into on
your Cortex. For the workshop, you won’t need to do
this as we’re using the template code that has
everything preconfigured for the robot you’ll be
using.

To setup the motors and sensors, use the toolbar to
go to the Motors and Sensors Setup window (the big
“Motors and Sensors Setup” button > Robot > Motors
and Sensors Setup.

In this window, you can configure your motors and
sensors in the Motors and Sensors tabs respectively.
Enter appropriate names for the motors and sensors
in the boxes that correspond to the physical ports
they are plugged into.

RobotC Reference – Motors & Sensors Setup

http://help.robotc.net/WebHelpVEX/index.htm#Resources/topic
s/Getting_Started/Motors_and_Sensors_Setup.htm

The motor and sensor names used in the template
are:

 leftDrive
 rightDrive
 leftLineTracker
 midLineTracker
 rightLineTracker

5 DRIVING & TURNING

To make the wheels on your robot turn, you need to
set the “speed” of the motor connected to the wheel.
The “speed” value ranges from -127 to +127,
where -127 is full speed in reverse, +127 is full speed
forwards and 0 is no power. The speed values for all
motors are stored in a special array called motor.

In the previous Motors & Sensors Setup section, we
gave names to each motor. We would use the same
name here when we’re setting the speed of the
motors. For instance, if we’ve named a motor
leftDrive, the following would turn that motor on
at full speed forwards:

motor[leftDrive] = 127;

RobotC Reference – Motors

http://help.robotc.net/WebHelpVEX/index.htm#Resources/topic
s/VEX_Cortex/ROBOTC/Motor_and_Servo/motor.htm

Once the motor speed is set, it will continue to be
powered on until you explicitly tell it to stop or until
the program terminates. To leave it on for a fixed
amount of time, use the following function to pause
the program for the specified amount of time:

 sleep(<number of milliseconds>);

RobotC Reference – Sleeping

http://help.robotc.net/WebHelpVEX/index.htm#Resources/topic
s/VEX_Cortex/ROBOTC/Timing/sleep.htm

EXAMPLE – DRIVE STRAIGHT FOR 1 SECOND THEN STOP

// Drive Straight
motor[leftDrive] = 127;
motor[rightDrive] = 127;

// Leave the motors on for 1 second
sleep(1000);

// Sets the motor speed to 0
motor[leftDrive] = 0;
motor[rightDrive] = 0;

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 3 OF 8

EXAMPLE – TURNING

In the previous example, both wheels ran forwards to
make the robot drive straight. Similarly, you can
make one wheel go forwards and one wheel go
backwards to make the robot turn on the spot.

// Turn Right
motor[leftDrive] = 127;
motor[rightDrive] = -127;

// Leave the motors on for 1.5 seconds
sleep(1500);

// Turn Left
motor[leftDrive] = -127;
motor[rightDrive] = 127;

// Leave the motors on for 1.5 seconds
sleep(1500);

// Sets the motor speed to 0
motor[leftDrive] = 0;
motor[rightDrive] = 0;

Real motors are not perfect

Due to friction, wear and tear inside the motors, each
motor may run slightly slower or faster than other
motors, and the robot usually won’t drive perfectly
straight with our simple code above.

6 TASK – CONTROLLING MOTORS

First, open the template program and save it under a
different name.

Look at the template code. You will see some
#pragma statements, then a task auton(), and
finally a task main(). For the rest of the workshop,
you should only write code into the auton task and
write functions between the auton task and the
#pragma statements.

Next, type the following code inside the task
auton().

// Drive Straight
motor[leftDrive] = 127;
motor[rightDrive] = 127;

// Leave the motors on for 1 second
sleep(1000);

// Turn Right
motor[leftDrive] = 127;
motor[rightDrive] = -127;

// Leave the motors on for 1.5 seconds
sleep(1500);

// Turn Left
motor[leftDrive] = -127;
motor[rightDrive] = 127;

// Leave the motors on for 1.5 seconds
sleep(1500);

// Sets the motor speed to 0
motor[leftDrive] = 0;
motor[rightDrive] = 0;

To try this program out, read the next two
subsections.

COMPILE, DOWNLOAD, & RUN ON A PHYSICAL ROBOT

To send your code to the robot, you need to Compile
it and then Download it to the robot. To do this, you
can hit F5 on your keyboard or press the big
“Download to Robot” button. Make sure that you’ve
connected your Laptop to the VEX Controller before
you download your program.

It is also a good idea to regularly compile your code
as you go to check for errors. You can do this by
hitting F7 on your keyboard or by clicking the big
“Compile Program” button.

TESTING WITHOUT A ROBOT – ROBOTC PC-EMULATOR

Waiting in the queue for the robot probably takes
ages. Fortunately, there’s a way to test your program
without needing a physical robot.

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 4 OF 8

First, select Window > Menu Level > Super User.

Next, select Robot > Compiler Target > PC-Based
Emulator.

Now, when you click the “Download to Robot”
button, it will no longer download the program to a
physical robot. Instead, it is downloaded to a system
inside ROBOTC that simulates a robot’s VEX Cortex.

Common Mistake – Wrong Compiler Target

When it’s time to test your code on an actual,
physical robot, don’t forget to switch the compiler
target back to “Physical Robot”, or else the robot will
be running the previous person’s code and you will
be spectacularly confused. I learnt the hard way :’(

Downloading your code to the emulator will open a
new dialog box:

When you see this “Program Debug” dialog box, you
are in Debugging Mode. To exit out of debugging
mode, simply close this dialog box, or click the giant
“Exit Debugger” button in the toolbar.

At first, the emulator starts up as paused. Before we
start the emulation, let’s open up a debugger

window that shows the motor status in real time.
Select Robot > Debugger Windows > Motors.

This opens a panel at the bottom. At first, it will be
empty, but it will show what motors are available
when you click “start” in the “Program Debug” dialog
box. So, without further ado, start the emulation and
see the values change over time!

DEBUGGING TECHNIQUES – BREAKPOINTS & STEPPING

While the compiler can detect most mistakes in your
program, in a lot of times the program is perfectly
valid and compiles successfully, but it doesn’t do
what you want it to do. Here is when the debugger is
very useful. You can use the debugger both when
you’re using the emulator and when you’re
connected to a physical robot.

First, enter Debugging Mode either by downloading
the code to the robot, or by selecting Robot > Open
Debugger Manually. While you’re at it, also select
Robot > Debugger Windows > Local Variables.

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 5 OF 8

Next, see the grey bar between the line numbers and
the code? Click on this grey bar right after the
// Turn Right comment. You should then see a red
dot. This puts a breakpoint on that line and tells the
debugger to pause the program when we reach that
line. (To remove the breakpoint, click on the red dot
again).

Now, start the program by pressing “Start”. After one
second, you’ll get notified that you’ve hit a
breakpoint. The yellow line shows which line the
program is about to execute.

Next, click “Step Into” to advance the program by
one statement. Notice that the yellow line has
shifted. Now look at the MotorsWithPID panel, click
“Step Into” again, and see how the motor power for
the rightDrive motor has changed from 127 to -127.

Finally, click “Resume” to let the program finish on
its own.

When your program compiles but doesn’t work as
intended, use this tool to step through your program
and check that each line is doing what you expect it
to do. If you’re using variables, the Local Variables
panel will show what value each variable has while
you step through it, so you can also use that to verify
your program’s correctness.

RobotC Reference – Program Debug

http://help.robotc.net/WebHelpVEX/index.htm#Resources/topic
s/ROBOTC_Debugger/Debug_Windows/Program_Debug.htm

7 THE LINE TRACKER SENSOR

The line tracker sensor can be used by your robot to
detect lines and follow it.
In ROBOTC, the Line Tracker Sensor can give you a
number between 0 and 4095, depending on the
surface is detecting. Light surfaces will return a low
value while darker surfaces will return a higher value.

For your workshop, you will be following a line made
of black tape on top of a white plastic corflute board.
The black taped line gives a sensor value of 2840,
and the white plastic board gives a sensor value of
750:

VALUES: 0 750 2840 4095
 M

IN VALUE

W
HITE PLASTIC BOARD

BLACK TAPE

M
AX VALUE

The value that the Line Tracker senses can be found
using the SensorValue(NameOfSensor) function,
where the variable NameOfSensor is replaced with
the name of the line tracker in the Motors and
Sensors setup. In our case, we would be using the
following function calls:

SensorValue(leftLineTracker);
SensorValue(midLineTracker);
SensorValue(rightLineTracker);

To make a simple Line Following Robot, you will
need to determine a threshold value that will help
the robot decide if it’s seeing a black line or not.

You can use the Debugger and ROBOTC Emulator to
calibrate your Line Tracker Sensor and find out what
values it reads when it senses a light and dark
surface.

Note

For the purpose of these workshops, you won’t need
to calibrate the sensors and measure the sensor
values yourselves, as the sensor values are given
above.

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 6 OF 8

Here’s an example code showing you how you can
read the current sensor value from the line trackers
and react to it:

// Get the current detected value from the
// Middle Line Tracker
midSensor = SensorValue(midLineTracker);

if (midSensor < 1000){
 // Drive straight
 motor[leftDrive] = 127;
 motor[rightDrive] = 127;
}

RobotC Reference – SensorValue

http://help.robotc.net/WebHelpVEX/index.htm#Resources/topic
s/VEX_Cortex/ROBOTC/Sensor/sensorValue.htm

8 TASK: SIMPLE LINE FOLLOWING

You now know how to use the Line Tracker Sensor. In
the previous example, you learnt how to make use of
one sensor to determine whether a robot was on the
line or not. Using more sensors means you can get
more data and therefore make your robot follow the
line better.

The robot you will be using comes with 3 sensors.
The diagram above illustrates how you could use
these sensors to determine your robot’s position on
the line it should be following.

If the middle sensor detects the line (A), then it
means your robot is on the line and therefore your
robot should drive straight.

If the right sensor detects the line (B), then it means
that your robot has turned too far to the left and
therefore needs to turn to the right to correct its
position.

If the left sensor detects the line (C), then it means
that your robot has turned too far to the right and

therefore needs to turn to the left to correct its
position.

Does this sound familiar? This is very similar to the
problem you solved in Section 7 of the C portion of
this workshop.

Using the information that you have now learnt
about ROBOTC, try to adapt your code from Section
7 so that you can create a ROBOTC Line Following
Program.

9 FINER LINE POSITION

So now you know whether your robot is on the left-
side of the line, the right-side of the line, or square in
the middle. Great! Can we do better though? In the
previous task, if the robot wasn’t exactly on the line,
you made the robot turn at a certain speed. What if
the speed at which the robot corrected itself
depended on how far the sensor was from the line?
For example, exactly how far away from the line are
we?

One way of obtaining greater precision when
measuring the line’s position is to add more sensors.
With five sensors, we can detect the line in five
different locations. With twenty sensors, it’s even
better. With more than that, eventually we’ve made
ourselves a 1D camera and we’ll need to start
teaching you an entire course on computer vision as
well.

However, sensors take up space and money, and
you’re limited to the three sensors for this workshop
anyway. Instead of adding more sensors, we will
show you an alternative method of obtaining greater
precision when measuring the line’s position. We will
rely on the fact that the sensors are analogue
sensors.

A B C

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 7 OF 8

Refer back to the diagram at the top of Section 7.
Here’s how the sensor reacts to each situation.

SENSOR EXAMPLE A
SENSOR SEES/
SENSOR VALUE

EXAMPLE B
SENSOR SEES/
SENSOR VALUE

EXAMPLE C
SENSOR SEES/
SENSOR VALUE

1 Light/Low Light/Low Dark & Light/
Medium

2 Dark/High Dark & Light/
Medium

Dark & Light/
Medium

3 Light/Low Dark & Light/
Medium

Light/Low

ACTION TO
TAKE

No change to
motor power

More power to
left side

More power to
right side

As you can see, the reading from the Line Tracker
Sensors changes as the amount of white/black
changes. The closer the black line is to a sensor, the
higher the sensor value.

What happens when we try visualising these sensor
readings onto bar graphs? To make things easier to
see, lets scale the sensor values so that changes are
emphasised.

Notice how the actual line’s position is hinted by
where the inverted bars’ average horizontal location

is. What’s that term called in statistics again? It’s the
mean. Let’s see how we can calculate this with the
following example sensor values:

SENSOR 1 SENSOR 2 SENSOR 3

952 1010 2740

First, let's clean up the sensor data so it makes most
sense to us. If we knew that the sensor value for
black tape is 2840, and the sensor value for the white
ground is 750, then we can subtract the sensor
values by 750 and divide each result by (2840 –
750). Doing this gives us nice values between 0 and 1
where 1 represents being on black tape and 0
represents being on the ground.

SENSOR 1 SENSOR 2 SENSOR 3

0.0967 0.1244 0.9522

Next, we can think of these values as giving us a
relative measure of confidence that the white line is
underneath it. Say, to illustrate, that the sensors are
positioned at -1cm, 0cm, and 1cm from the centre of
the robot. We can then calculate the mean position
weighted by the adjusted sensor values:

−1 × 0.0967 + 0 × 0.1244 + 1 × 0.9522
0.0967 + 0.1244 + 0.9522

= 0.7291

We then get a pretty good estimate that the line is at
position 0.7291cm from the robot’s centre.

For Astute Students

If you carefully look at the mathematics behind the
concepts above, you might realise that estimating
the line’s position can be amazingly simplified to:

someConstant * (leftValue – rightValue)

It’s a bit anticlimactic, isn’t it? I could’ve just given
you this line of code from the beginning. But, what’s
the fun in that.

SCALED

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

(SENSORS)

TH
E

LI
NE

SENSOR READINGS

2 1 3

1 2 3

1 2 3

1 2 3

1 2 3

1

0

1

0

1

0

1

0

1

0

AURA WORKSHOP 2020 HANDOUT VERSION 1 (2020-03-06) PAGE 8 OF 8

10 TASK – BETTER LINE FOLLOWER

Create a line following program that estimates the
actual position of the taped line and uses this
estimate to determine how much to turn. The further
away from the line, the greater the amount the robot
should turn. The closer the robot is to the line, the
less it should turn.

Hint: For each millimetre the line is further away
from the centre of the robot, how much more power
should be given to the motors for turning the robot?
You’ll need to test and find this out yourself.

11 BONUS TASK: PID CONTROL

In the previous task, we have essentially
programmed something called a “Proportional
Controller”. While it has the potential to out-perform
the basic line following algorithm from the earlier
task, you may find that it may not work consistently
well throughout the course.

The ultimate general-purpose algorithm we will
show you is called the PID Controller. It requires
more code and more tuning, but it should make your
line following perform much better.

We have material for PID Control for which this
column is too narrow to contain. Instead, we
recommend you to the following book by our one
and only George Gillard (2017-2018, as the
chairperson of AURA that is).

Recommended reading:

 George Gillard. An Introduction to PID
Controllers. Second Edition.
http://georgegillard.com/documents

The End.

